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In the present article we consider a motion of a passive tracer particle, whose
trajectory satisfies the Itô stochastic differential equation dx(t)=V(t, x(t)) dt
+`2o dw(t), where w( · ) is a Brownian motion, V is a stationary Gaussian
random field with incompressible realizations independent of w( · ) and o > 0.
We prove the superdiffusive character of the motion under certain conditions on
the energy spectrum of the velocity field. The result is shown both for steady
(time independent) and time dependent and Markovian velocity fields. In addi-
tion, we provide explicit upper and lower bounds for the Hurst exponent of the
trajectory. All previous rigorous results concerned explicitely solvable shear
flows cases.
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1. INTRODUCTION

A very simple model of a passive tracer motion in a turbulent medium is
provided by an Itô stochastic differential equation equation

˛dx(t)=V(t, x(t)) dt+`2o dw(t), t \ 0,
x(0)=0

(1.1)

Here V( · , · ) is a time-space stationary, zero mean, d-dimensional random
field with incompressible realizations given over a probability space T0 :=
(W,V, m), w( · ) is a d-dimensional standard Brownian motion given over



T1 :=(S,W, Q). The parameter o is sometimes referred to as the molecu-
lar diffusivity and throughout this paper we assume that it is strictly posi-
tive. The trajectory process x( · )=(x1( · ),..., xd( · )) is considered over the
product probability space T0 éT1 :=(W×S,V éW, m é Q). Let O ·P, E
denote the expectation operators corresponding to m and m é Q respec-
tively. Let also

R(t, x) :=OV(t, x) é V(0, 0)P, (t, x) ¥ R×Rd

be the covariance matrix of V.
The asymptotic behavior of x( · ) is called diffusive when

lim
t ‘+.

di, j(t)
t
=dgi, j, - i, j=1,..., d, (1.2)

with di, j(t) :=E[xi(t) xj(t)] and dgi, j finite. It is well known, see, e.g.,
ref. 13, (both in the steady, i.e., time independent, and non-steady cases)
that for a zero mean flow (OVP=0) the principal condition that guarantees
the diffusive behavior of trajectories is

F
R
d

e(dk)
|k|2

<+.. (1.3)

Here the measure e( · ), called the energy spectrum of the field, is defined as
e( · ) := trace R̂( · ), where

R(0, x)=F
R
d

e ix ·k R̂(dk).

The matrix Dg=[dgi, j], given by (1.2), is called then the effective diffusivity
of the medium.

On the other hand, simple shear layer flow examples show that, when
(1.3) is not satisfied, the particle motion instead of being diffusive is rather
superdiffusive. In fact in a series of articles, see, e.g., refs. 1–4, Avellaneda
and Majda gave a complete characterization of the tracer motion corre-
sponding to various families of shear layer random flows. Recently similar
results had been obtained by Ben Arous and Owhadi for a superpositions
of periodic shear flows taking place on an infinite number of scales, ref. 5.

In the present article we set out to investigate the superdiffusive
behavior of the particle motion under a quite general family of Gaussian
flows (in particular non-shear flows). We consider both steady and non-
steady velocity fields.
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In the first case we suppose that the field V(t, x) — V(x) is isotropic
and its energy spectrum satisfies the power law. More specifically we
assume that the covariance matrix of the field is given by

R(x)=F
R
d

e ix ·k
a(|k|)
|k|2a+d−2

C(k) dk, x ¥ Rd, (1.4)

with

C(k) :=I−
k é k
|k|2
.

Here a cut-off function a: [0,+.)Q [0,+.) is continuous at 0 with
a(0) > 0 and satisfies supp a( · ) ı [0, K] for a certain K > 0. The matrix
C appearing in (1.4) guarantees that the realizations of the field are diver-
genceless, i.e., Nx ·V(x) — 0, m-a.s. To ensure integrability of the spectrum
we assume further that a < 1. The parameter a is directly related to the
decay exponent of R, namely R(x) ’ |x|a−1 for |x|± 1. As a increases to
one, the spatial decay exponent of R decreases to zero and, consequently,
spatial correlation of velocity increases.

Note also that in our case (1.3) is fulfilled iff a < 0, so in this case the
limits in (1.2) exist and the behavior of the particle is diffusive. We show,
in Theorem 1 later, that when a ¥ (0, 1) the behavior of the particle is
super-diffusive in the following sense. There exists cg, c¯

> 0 such that

C− lim inf
t ‘+.

1
t1+c*

E |x(t)|2 \ c
¯

(1.5)

The symbol C-lim inf denotes the lim inf of the Césaro averages.
In the non-steady case we consider a family of time dependent, stationary

Gaussian Markovian fields with the covariance matrix given by

R(t, x)=F
R
d

e ix ·k e−|k|
2b t a(|k|)
|k|2a+d−2

C(k) dk (1.6)

with a( · ), a as in (1.4) and b \ 0. The function exp(−|k|2b t) in (1.6) is
called the time correlation function of the velocity V corresponding to the
wave number k. For b=0 the field possesses the spectral gap property,
cf. ref. 7, i.e., the speed of time decorrelation is uniform for all wave
numbers. On the other hand, for b > 0, the velocity field lacks the spectral
gap and thus strong (time) mixing property. In this case the diffusive
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regime is a result of a subtle balance between temporal and spatial mixing
properties of the field. It can be shown, see refs. 10, 12, that for

a < 0, or a ¥ (0, 1) but a+b < 1 (1.7)

(see the region I of Fig. 1) the limits in (1.2) exist (diffusive behavior).
In our second result, see Theorem 2 and the accompanying it Fig. 1,

we prove the super-diffusive behavior of the tracer particle, in the sense of
(1.5), provided that both conditions mentioned in (1.7) are violated.

In addition, in both steady and time dependent cases we provide lower
and upper estimates of the parameter cg. In the time dependent case this
leads to distinguishing three separate regimes concerning the values of the
parameters a, b appearing in the definition of the spectrum. They corre-
spond to the regions II, III, IV of Fig. 1. In fact the estimate of cg in region
II appears to lead to a definite value of the superdiffusivity exponent
namely E |x(t)|2 ’ t (a+2b−1)/b, t± 1. This result coincides with the heuristic
argument given in ref. 10.

Theorems 1 and 2 are, according to our knowledge, one of the first
results showing rigorously the superdiffusive behavior of the motion of a
passive tracer displayed in a model that is not explicitly solvable. While
preparing the article we have learned (ref. 9) that similar in nature results
have been obtained by Owhadi for deterministic velocities that are super-
positions of periodic flows taking place on an infinite number of scales.

The method we use to prove both Theorems 1 and 2 relies on the
variational principles, formulated in Proposition 1 later and proved

Fig. 1. The regimes corresponding to a time dependent flow.
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in ref. 15. These principles allow us to estimate the Laplace transform
>+.0 e−lt D(t) dt, where D(t)=[di, j(t)], see (1.2), for small l > 0. The test
functions we use to derive those bounds are the first degree polynomials in
an appropriate Gaussian Hilbert space generated by the velocity field.

Thanks to an easy upper bound (3.8) and a Tauberian type of result
given in (3.9) the bounds on the Laplace transform lead to both lower and
upper bounds for D(t) for t± 1.

We finish this section pointing out the difference between the scaling
exponents appearing in our model and those of the shear layer model of
refs. 1–4. It is caused by the absence of any infrared cut-off for the wave-
numbers in the spectral measure considered here, see (1.6).

This fact explains why we obtain a different super-diffusivity exponent
in the only region we know its precise value, i.e., region II, from the one of
ref. 3.

2. THE FORMULATION OF THE MAIN RESULTS

2.1. The Time Independent Case

Let V(x), x ¥ Rd be a zero mean Gaussian homogeneous field with the
covariance matrix given by (1.4). Let us introduce the following notation:

cg :=sup[c \ 0 : lim inf
t ‘+.

t−1− c E |x(t)|2 > 0] (2.1)

and

cg :=sup 5c \ 0 : lim
t ‘+.

t−2− c F
t

0
E |x(s)|2 ds=+.6 , (2.2)

where x( · ) is given by (1.1). Obviously, cg [ cg.

Theorem 1. Under the assumptions about the field V made above
we have

cg \ a2, when a ¥ (0, 1/2] (2.3)

cg \
a

3−2a
, when a ¥ (1/2, 1) (2.4)

In addition,

cg [ a, when a ¥ (0, 1) (2.5)

Remark. The upper estimate for cg asserted in Theorem 1 is sharp
for the shear layer model, see ref. 4.
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2.2. The Time Dependent Case

In this section we assume that the field V(t, x), (t, x) ¥ R×Rd is time
dependent, zero mean, Gaussian, with the covariance matrix given by (1.6).

Theorem 2. Suppose that the field satisfies the assumptions made
above and cg, cg are defined by (2.2) and (2.1). Then,

(i) cg=cg=a+b−1
b , when 1 < a+b and a+2b < 2, see region II on

Fig. 1.

(ii) 1−b
2−a−b [ cg [ cg [ a+b−1

b , when 2 < a+2b, b < 1, see region III on
Fig. 1.

(iii) Both cg and cg are given by (2.3), (2.5) when b > 1, see region
IV on Fig. 1.

Remark 1. A heuristic argument of ref. 10 shows that in region II
of Fig. 1 the laws of continuous trajectory processes ex(t/eq), t \ 0 with
q := 2b

a+2b−1 converge weakly, as e a 0, to a fractional Brownian motion with
the Hurst exponent H=a+2b−1

2b . This result has been proven rigorously for
the weak fluctuation limit in ref. 9.

Remark 2. As in the time independent case a simple direct calcula-
tion shows that the upper estimates for cg asserted in Theorem 2 are sharp
for the shear layer model. Indeed, in this case the particle motion is
described by

˛x(t)=F
t

0
V(s, w2(s)) ds+w1(t),

y(t)=w2(t),

where w1( · ), w2( · ) are two independent one dimensional standard Wiener
processes and V( · , · ) is an independent of them time-space stationary
Gaussian field with the covariance given by

R(t, y)=OV(t, y) V(0, 0)P=F
|k| [K

e i kye−|k|
2b t dk
|k|2a−1

, (2.6)

with a, b as in (1.6) and K > 0 a fixed ultraviolet cut-off.
A direct calculation leads to the following formula

Ex2(t)=2 F
t

0
ds F

s

0
F
R
R(u, y) exp 3 −y

2

2u
4 du dy
`2pu

+t (2.7)
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Using (2.6) we obtain that the right hand side of (2.7) equals

2t F
K

0

51−1− exp{−(k2b+k2) t}
(k2b+k2) t

6 dk
(k2b+k2) k2a−1

+t

After a straightforward calculation we conclude that Ex2(t) ’ ct, t± 1 for
some c > 0, when a < 0, or a+b < 1 (cf. region I of Fig. 1), Ex2(t) ’
ct (a+2b−1)/b, t± 1, when a+b > 1 and b < 1 (cf. regions II and III of Fig. 1).
Finally, Ex2(t) ’ ct1+a, t± 1, when b > 1 (cf. region IV of Fig. 1).

3. AUXILIARIES

3.1. Estimates of the Variance of an Additive Functional of

a Markov Process with the Help of Variational Principles

Suppose that (W,d) is a Polish metric space with V its Borel s-algebra.
Let (gt)t \ 0 be a certain Markov process, with W its state space, defined
over the probability space T0 éT1. By (Q t)t \ 0 we denote its transition
of probability semigroup, i.e., the semigroup of operators defined on the
space B(W) consisting of bounded and Borel measurable functions on W

satisfying

E[F(gt+h) |Zt]=QhF(gt)

for any t, h \ 0, F ¥ B(W). Here (Zt) is the natural filtration of s-algebras
corresponding to the process and E[ · |Zt] is the respective conditional
expectation operator.

Suppose further that m is invariant under the process, i.e., > Q tF dm
=> F dm for any t \ 0, F ¥ B(W) and that the semigroup (Q t)t \ 0 extends to
a C0-continuous semigroup of contractions on L2 :=L2(m). By ( · , · )L2 we
denote the respective scalar product on L2.

Let L be the generator of the semigroup and let

RlF :=F
+.

0
e−ltQ tF dt, l > 0, F ¥ L2

denote the family of resolvent operators corresponding to the process.
Suppose also that the bilinear form

EL(F, G) :=(−LF, G)L2, (F, G) ¥D(L)×L2 (3.1)

is closable, see ref. 16, p. 28 for the definition of closability. Define

E sL(F, G) :=
1
2 [EL(F, G)+EL(G, F)]
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the symmetric part of EL. Thanks to the closability assumption there exists
a self-adjoint operator S: D(S)Q L2, the symmetric part of the generator,
such that D(L) ıD(S1/2) and E sL(F, G)=(S

1/2F, S1/2G)L2, F, G ¥D(L),
see ref. 16. Suppose further that C :=D(L) 5D(S) forms a core of L and
define the anti-symmetric part of L as AF :=LF−SF.

Let H1 be the Hilbert space obtained as the closure of C0 :=C 5 L20
under any norm given by ||f||21, l :=l ||f||2L2+||S

1/2f||2L2 with l > 0. Here
L20 :={f ¥ L2 : > fdm=0}. We define L20 ıH−1 as the dual to H1 under
( · , · )L2 pairing. According to Section 2.4, pp. 19–22 of ref. 18 its norm,
restricted to L20, is given by

||f||2−1, l :=sup
g ¥ C

[2(f, g)L2−||g||
2
1, l] <+. (3.2)

Suppose that V: W Q R is a random variable over T0, such that V ¥ L2 and

Y(t) :=F
t

0
V(gs) ds, t \ 0 (3.3)

Let l > 0 and denote ql :=RlV ¥D(L), i.e.,

lql−Lql=V (3.4)

Denote

dl(V) :=||ql ||
2
1, l=(RlV, V)L2 (3.5)

The following variational principle has been proven in ref. 15, see
Proposition 5.1, p. 216.

Proposition 1 (The Variational Principle). The following equali-
ties hold

dl(V)=sup
F ¥ C

S(F) (3.6)

where S(F) :=2(V, F)L2−||AF||
2
−1, l−||F||

2
1, l and

dl(V)= inf
F ¥ C

L(F) (3.7)

where L(F) :=||V−AF||2−1, l+||F||
2
1, l.

To use the above variational principle in order to investigate the
asymptotics of E |Y(t)|2/t for t± 1 we shall need the following result.
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Lemma 1. We have

1
t
E |Y(t)|2 [ 16(R1/tV, V)L2, -t > 0. (3.8)

In addition, if there exist o, C > 0 such that

(RlV, V)L2 \ Cl−o, -l ¥ (0, 1)

then for any oŒ ¥ (0, o) there exists C1 > 0 such that

1
t2+oŒ

F
t

0
E |Y(s)|2 ds \ C1. (3.9)

Proof. We can rewrite the right hand side of (3.3) as

l F
t

0
ql(gs) ds+Ml(t)+ql(g0)−ql(gt), (3.10)

where

Ml(t) :=ql(gt)−ql(g0)−F
t

0
Lql(gs) ds

is a (Zt)-martingale, with EM2
l(t)=2t ||S

1/2ql ||
2
L2. Using (3.5) we conclude

that

1
t
EY2(t) [

4
t
[(lt)2 ||ql ||

2
L2+t ||ql ||

2
1+2 ||S

1/2ql ||
2
L2]

and (3.8) follows upon the substitution l :=1/t.
(3.9) follows from the following simple Tauberian type result modeled

on Lemma 4.5, p. 295 of ref. 22.

Lemma 2. Suppose that f: [0,+.)Q R is a non-decreasing, posi-
tive function, for which there exist +, C̄, c

¯
> 0 and o ¥ (0, +) such that

(i) f(t) [ C̄t2++ for all t > 0

(ii) >+.0 e−l tf(t) dt \ c
¯

l−3−o for all l ¥ (0, 1).

Then, for any oŒ ¥ (0, o) there exists c̃ > 0 such that

f(t) \ c̃t2+oŒ, -t > 0. (3.11)
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Proof. Suppose that c > 0 is arbitrary. We can write then, using (ii),
that

c
¯

l−3−o [ F
+.

0
e−l tf(t) dt=

1
l
F
+.

0
e−tf 1 t

l
2 dt. (3.12)

The utmost right hand side of (3.12) equals

1
l
F
l
− c

0
e−tf 1 t

l
2 dt+1

l
F
+.

l
− c

e−tf 1 t
l
2 dt.

This expression can be estimated using monotonicity of f and (i) by

1
l
f(l−1− c)+

c̄
l
F
+.

l
− c

e−t 1 t
l
22++ dt [ 1

l
f(l−1− c)+

c1
l3++

e−l
− c/2

for some constant c1 > 0. We have shown therefore that

c
¯

l−3−o [
1
l
f(l−1− c)+

c1
l3++

e−l
− c/2. (3.13)

Moving over the second expression on the right hand side of (3.13) to the
left hand side of the inequality, using the fact that

c1
l3++

e−l
− c/2 [ 1

2 c¯
l−3−o

for sufficiently small l > 0, we conclude (3.11). L

3.2. Homogeneous Gaussian Fields

Suppose that m is a positive integer and Jr(x) :=(1+|x|2)−r, x ¥ Rd,
where r > d/2. Let W be the Hilbert space of d-dimensional incompressible
vector fields that is the completion of C.0, div :={j ¥ C.0 (R

d; Rd) : Nx ·w=0}
with respect to the norm

||w||2W :=F
R
d
(|w(x)|2+|Nxw(x)|2+·· ·+|Nmx w(x)|2) Jr(x) dx.

We shall assume that m > d/2+1 so any w ¥ W is of C1 class of regularity.
We shall identify measure m with the law in W of the Gaussian velocity

field, whose covariance matrix is given by (1.4). The measure m is therefore
Gaussian of zero mean and homogeneous, i.e., > w(x) m(dw)=0 and
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myx=m, -x ¥ Rd. Here yx: W Q W is given by yxw( · ) :=w(x+·). In what
follows we shall identify the flow with V(x; w) :=V(yx(w)), x ¥ Rd, where

V(w) :=w(0). (3.14)

It is easy to see that the field defined in this way is of zero mean, Gaussian
with the covariance matrix given by (1.4).

3.3. Spectral Representation of Homogeneous Fields

By the Spectral Theorem (see, e.g., ref. 21) we know that there exist
two independent, identically distributed, real vector valued Gaussian spec-
tral measures V̂l( · ), l=0, 1 defined over (Rd, B(Rd)) with values in L2

such that

V(x)=F V̂0(x, dk), (3.15)

where

V̂0(x, dk) :=c0(k ·x) V̂0(dk)+c1(k ·x) V̂1(dk),

with c0(f) — cos(f), c1(f) — sin(f). Define also

V̂1(x, dk) :=−c1(k ·x) V̂0(dk)+c0(k ·x) V̂1(dk).

We write these two stochastic measures component-wise

V̂l(x, dk)=(V̂l, 1(x, dk),..., V̂l, d(x, dk)), l=0, 1.

The following relation holds

“V̂0(x, dk)/“xj=kjV̂1(x, dk), (3.16)

“V̂1(x, dk)/“xj=−kjV̂0(x, dk), j=1,..., d. (3.17)

One can check that > V̂1(x, dk) is a random field distributed identically to
and independently of V.

For a given function k from a certain admissible class C, see (3.20)
later for the definition of this class, and Gaussian random measures
V̂l1, i1 (x1, · ),..., V̂lN, iN(xN, · ), where xj ¥ Rd, lj ¥ {0, 1}, ij ¥ {1,..., d}, j=1,..., N
we define the multiple stochastic integral, cf. ref. 23,

F · · ·F
(Rd)N

k(k1,..., kN) V̂l1, i1 (x1, dk1) · · · V̂lN, iN (xN, dkN). (3.18)
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For k1,..., kN ¥S(Rd), the Schwartz space, we set

F · · ·F
(Rd)N

k1(k1) · · ·kN(kN) V̂l1, i1 (x1, dk1) · · · V̂lN, iN (xN, dkN)

:=F k1(k1) V̂l1, i1 (x1, dk1) · · · F kN(kN) V̂lN, iN (xN, dkN). (3.19)

We then extend the definition of multiple integration to the closure C of the
Schwartz space S((Rd)N) under the norm

||k||2 :=F · · ·F
(Rd)N

F · · ·F
(Rd)N

k(k1,..., kN) k(k −1,..., k
−

N)

×E[V̂l1, i1(x1, dk1) · · · V̂lN, iN(xN, dkN) V̂l1, i1(x1, dk −1) · · · V̂lN, iN(xN, dk −N)]
(3.20)

for any k ¥S((Rd)N). The expectation is to be calculated using the follow-
ing formal rule: we treat (V̂l1, i1 (x1, dk1),..., V̂lN, iN (xN, dkN)) formally as
joint zero mean normal whose covariance matrix is to be calculated with
the help of the following relations

E[V̂l, i(x, dk) V̂lŒ, iŒ(xŒ, dkŒ)]

=dl, lŒc0(k · (x−xŒ))
a(|k|)
|k|2a+d−2
1di, iŒ−

kik
−

i

|k|2
2 d(k−kŒ) dk dkŒ.

Let us denote i :=(i1,..., id), l :=(l1,..., ld) and let Yl, i denote the right
hand side of (3.18). Note that Yl, i ¥PN(V)—the Hilbert space obtained
as a completion of the space of Nth degree polynomials in variables
>k(k) V̂(x, dk) with respect to the standard L2 norm.

Denote by PN
reg the space of all Yl, i ¥PN given by (3.18) with

k ¥S((Rd)N) such that 0 ¨ supp k̂. The following result can be obtained by
a direct calculation.

Proposition 2. For any Yl, i ¥PN
reg we have

NYl, i=C
N

p=1
(−1) lp kp F · · ·F

(Rd)N

k(k1,..., kN)

×V̂l1, i1 (x1, dk1) · · · V̂lpŒ, ip (xp, dkp) · · · V̂lN, iN (xN, dkN). (3.21)

Here l −p :=1−lp.

658 Komorowski and Olla



4. THE PROOF OF THEOREM 1

4.1. The Lagrangian Process Corresponding to the Passive Tracer

Motion

Throughout this and the following section we shall assume that o=1.
Suppose that the process gt :=yx(t)(w), where x(t), t \ 0 is given by (1.1). It
is well known that this process is Markovian, see, e.g., ref. 18, p. 40, and
thanks to the incompressibility assumption m is invariant, see ibid. p. 41.
We also have

x(t) · e=F
t

0
Ve(gs) ds+`2 w(t) · e, (4.1)

where Ve(w) :=V(w) · e, see (3.14).
The following proposition holds, see ref. 14, Lemma 4.1.

Proposition 3. Preg is a core of the L2-generator L of the process
(gt)t \ 0. Moreover

LF=DF+V ·NF, F ¥Preg. (4.2)

Moreover Preg ı D(S) (the domain of the symmetric part of the generator).
The symmetric and anti-symmetric parts are correspondingly equal to

SF=DF, AF=V ·NF, F ¥Preg.

4.2. The Proof of (2.3)

Denote by P1
reg, 0 the space of all degree one, regular polynomials of

zero mean. Suppose that

Y :=F
R
d

k(k) · V̂0(0, dk) ¥P1
reg, 0. (4.3)

As the first step towards establishing (2.5) we calculate the supremum dg(t)
of S(Y), cf. (3.6), over all Y of the form (4.3) with V=Ve.

Lemma 3. We have

dg(t)=F
R
d

(C(k) e, e)Rd a(|k|) dk
|k|2a+d−2H(t, k)

, (4.4)

where

H(t, k) :=
1
t
+|k|2+F

R
d

1
1
t+|k−kŒ|2

×
(C(kŒ) k, k)Rd a(|kŒ|) dkŒ

|kŒ|2a+d−2
. (4.5)
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Proof. A direct calculation shows that for any Y of the form (4.3) we
have

2(Ve, Y)L2=2 F
R
d

(C(k) k(k), e)Rd a(|k|) dk
|k|2a+d−2

. (4.6)

Using (3.21) we calculate

||Y||21, 1/t=((1/t−D) Y, Y)L2

=F
R
d
11
t
+|k|22 (C(k) k(k), k(k))Rd a(|k|) dk

|k|2a+d−2
. (4.7)

Applying (3.21) once more we obtain

AY=V ·NY= C
d

i, j=1
F
R
d
F
R
d

ki(k) kjV̂1, i(dk) V̂0, j(dkŒ).

Here we used the abbreviated notation V̂i(dk)=(V̂i, 1(dk),..., V̂i, d(dk)) for
i=0, 1.

Note that

||AY||2−1, 1/t=(AY, F)L2, (4.8)

where F is the unique solution of the equation

(1/t−D) F=AY. (4.9)

We look for the solutions of (4.9) among the polynomials belonging to P2
reg

of the form

F= C
d

i, j=1
F
R
d
F
R
d

ai, j(k, kŒ) V̂1, i(dk) V̂0, j(dkŒ)

+ C
d

i, j=1
F
R
d
F
R
d

bi, j(k, kŒ) V̂0, i(dk) V̂1, j(dkŒ). (4.10)

Then, after a straightforward calculation, using (3.21), we obtain

−DF= C
d

i, j=1
F
R
d
F
R
d
[(|k|2+|kŒ|2) ai, j(k, kŒ)

+2k ·kŒbi, j(k, kŒ)] V̂1, i(dk) V̂0, j(dkŒ)

+ C
d

i, j=1
F
R
d
F
R
d
[2k ·kŒai, j(k, kŒ)+(|k|2+|kŒ|2) bi, j(k, kŒ)]

×V̂0, i(dk) V̂1, j(dkŒ). (4.11)

660 Komorowski and Olla



Thus, substituting into (4.9), we get the following system of equations

3(
1
t+|k|

2+|kŒ|2) ai, j(k, kŒ)+2k ·kŒbi, j(k, kŒ)=ki(k) kj
2k ·kŒai, j(k, kŒ)+(

1
t+|k|

2+|kŒ|2) bi, j(k, kŒ)=0.

Solving it, we obtain

˛ai, j(k, kŒ)=12 1 ki(k) kj
1
t+|k−kŒ|2

+
ki(k) kj
1
t+|k+kŒ|2
2

bi, j(k, kŒ)=
1
2
1 ki(k) kj
1
t+|k−kŒ|2

−
ki(k) kj
1
t+|k+kŒ|2
2 .

(4.12)

Substituting for ai, j, bi, j into (4.10) and then subsequently using (4.8) we
conclude that

||AY||2−1, 1/t=A(k),

where

A(k) :=
1
2
5F

R
d
F
R
d

(C(k) k(k), k(k))Rd (C(kŒ) k, k)Rd a(|k|) a(|kŒ|) dk dkŒ
|k|2a+d−2 |kŒ|2a+d−2 (1t+|k−kŒ|2)

+F
R
d
F
R
d

(C(k) k(k), k(k))Rd (C(kŒ) k, k)Rd a(|k|) a(|kŒ|) dk dkŒ
|k|2a+d−2 |kŒ|2a+d−2 (1t+|k+kŒ|2)

6 .

Summarizing, we have shown that

dg(t)= sup
k ¥S(Rd; Rd)

G(k),

where

G(k) :=2 F
R
d

(C(k) k(k), e)Rd a(|k|) dk
|k|2a+d−2

−F
R
d
11
t
+|k|22 (C(k) k(k), k(k))Rd a(|k|) dk

|k|2a+d−2
−A(k).

Using a standard variational calculus one concludes that the maximizer of
G( · ) is given by

k0=H−1(t, k) e,

with H( · , · ) given by (4.5). In addition, the corresponding maximal value
of G( · ) equals

G(k0)=F
R
d

(C(k) k0(k), e)Rd a(|k|) dk
|k|2a+d−2

and the conclusion of the lemma follows. L
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Substituting k :=`t k, kŒ :=`t kŒ in the integrals appearing on the
right hand side of (4.4) we conclude that

dg(t)=ta F
R
d

(C(k) e, e)Rd a(t−1/2 |k|) dk
|k|2a+d−2HŒ(t, k)

, (4.13)

where

HŒ(t, k) :=1+|k|2+ta F
R
d

1
1+|k−kŒ|2

×
(C(kŒ) k, k)Rd a(|kŒ|/`t) dkŒ

|kŒ|2a+d−2

[ 1+|k|2+ta |k|2H0(t, |k|),

where

H0(t, k) :=||a||L. F
K`t

0

du
u2a−1[1+(u−k)2]

. (4.14)

Consider first the case a > 1/2. We can estimate then the integral
appearing on the right hand side of (4.14) by

C
1+k2

F
k/2

0

du
u2a−1

+
C
k2a−1

F
+.

k/2

du
1+u2

[
C
k2a−1

.

Hence,

dg(t) \ Cta F
R
d

(C(k) e, e)Rd a(t−1/2 |k|) dk
|k|2a+d−2 (1+|k|2+|k|3−2a ta)

.

After a substitution k :=ta/(3−2a)k we obtain

dg(t) \ C1ta/(3−2a)

for some positive constant C1 > 0 and (2.4) follows.
In case when a ¥ (0, 1/2) we have

H0(t, k) [ Ck1−2a F
2k

0

du
1+(k−u)2

+C F
+.

2k

du
u2a−1(1+u2)

[ C1(k1−2a+1).

Finally, we arrive at the following estimate

dg(t) \ c ta F
R
d

(C(k) e, e)Rd a(t−1/2 |k|) dk
|k|2a+d−2 (1+|k|2+ta |k|2+ta |k|3−2a)

.

662 Komorowski and Olla



After the substitution k :=ta/2k we get

dg(t) \ cta
2
F
R
d

(C(k) e, e)Rd a(t−(1+a)/2 |k|) dk
|k|2a+d−2 [1+|k|2 (1+t−a)+ta(a−1/2) |k|3−2a]

from which (2.3) follows. L

4.3. The Proof of (2.5)

We use the variational principle expressed by (3.7) and the estimate
(3.8) to obtain the upper bound. We take F=0 as a test function in (3.7).
Then,

||Ve ||
2
−1, 1/t=F

R
d

ce(k) a(|k|) dk
(|k|2+1t) |k|

2a+d−2 [ C F
K

0

dk
(k2+1t) k

2a−1 . (4.15)

Substituting k :=t1/2k we conclude that the utmost right hand side of (4.15)
is of order of magnitude

Cta F
+.

0

dk
(k2+1) k2a−1

for t± 1

and (2.3) follows. L

5. THE PROOF OF THEOREM 2

In this case the environment is non-static and can be described as the
time stationary solution of an infinite dimensional linear stochastic differ-
ential equation

dw(t)=−Aw(t) dt+B dW(t). (5.1)

(w(t))t \ 0 takes values in W, see ref. 11. Here W(· ) is a cylindrical Wiener
process on L2div(R

d, Rd)—the space of all square integrable, incompress-
ible d-dimensional vector fields—defined over the probability space T2.
B: L2div(R

d, Rd)Q W is the continuous extension of

Bk5 (k)=`2E(|k|) |k| (1+2b−d)/2 k̂(k), k ¥ C.0, div, (5.2)

where b \ 0. It can be shown, see part (1) of Proposition 2 of ref. 11, that B
is a Hilbert–Schmidt operator.
A, on the other hand, is the generator of a semigroup S( · ) given by

S(t) k5 (k) :=e−|k|
2b t k̂(k), k ¥ C.0, div. (5.3)
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It can be shown, see part (2) of Proposition 2 ibid., that (S(t))t \ 0 extends
to a C0-semigroup of operators on W, see, e.g., ref. 11, provided that
r ¥ (d/2, d/2+b).

We can write that the particle displacement is given by (4.1), with gt :=
yx(t)(w(t)), t \ 0. We formulate an analogue of Proposition 3, cf. Lemma 6.1
of ref. 14.

Proposition 4. Preg is a core of the L2-generator L of the process gt,
t \ 0. Moreover,

LF=DF+LF+V ·NF, F ¥Preg. (5.4)

Here L is the L2-generator of w( · ). Moreover Preg ıD(S), the domain of
the symmetric part of the generator, and the symmetric and anti-symmetric
parts are correspondingly SF=DF+LF, AF=V ·NF, F ¥Preg.

By a straightforward direct calculation one can establish the following.

Proposition 5. We have PN
reg ı D(L). In addition, for any l=

(l1,..., lN) ¥ {0, 1}N, i=(i1,..., iN) ¥ {1,..., d}N and Yl, i given by (3.18) we
have

LYl, i=−F · · ·F
(Rd)N

(|k1 |2b+·· ·+|kN |2b) k(k1,..., kN)

×V̂l1, i1 (x1, dk1) · · · V̂lN, iN (xN, dkN). (5.5)

The proof of Theorem 2 follows the same line as the corresponding
argument for Theorem 1 and relies on the use of variational principles
expressed in Proposition 1 together with the accompanying Lemma 1.

5.1. The Proof of the Lower Bounds on cg

Note that for Y given by (4.3) we have, after the calculations similar
to those performed in Section 4.2,

||Y||1, 1/t=11
1
t
−L−D2 Y, Y2

L2

=F
R
d
11
t
+|k|2b+|k|22 (C(k) k(k), k(k))Rd a(|k|) dk

|k|2a+d−2
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and

||AY||−1, 1/t

=
1
2
5F

R
d
F
R
d

(C(k) k(k), k(k))Rd (C(kŒ) k, k)Rd a(|k|) a(|kŒ|) dk dkŒ
|k|2a+d−2 |kŒ|2a+d−2 (1t+|k|

2b+|kŒ|2b+|k−kŒ|2)

+F
R
d
F
R
d

(C(k) k(k), k(k))Rd (C(kŒ) k, k)Rd a(|k|) a(|kŒ|) dk dkŒ
|k|2a+d−2 |kŒ|2a+d−2 (1t+|k|

2b+|kŒ|2b+|k+kŒ|2)
6 .

The supremum dg(t) of S( · ), cf. (3.6), over the test functions of the form
(4.3) can be calculated exactly as in Lemma 3, which leads to

dg(t)=F
R
d

(C(k) e, e)Rd a(|k|) dk
|k|2a+d−2Hb(t, k)

, (5.6)

where

Hb(t, k) :=
1
t
+|k|2+|k|2b

+F
R
d

1
1
t+|k|

2b+|kŒ|2b+|k−kŒ|2
×
(C(kŒ) k, k)Rd a(|kŒ|) dkŒ

|kŒ|2a+d−2
(5.7)

5.1.1. The Case (i)
We substitute k :=t1/(2b)k, kŒ :=t1/(2b)kŒ in (5.6) and (5.7). Then,

dg(t)=t(a+b−1)/b F
R
d

(C(k) e, e)Rd a(|k| t−1/(2b)) dk
|k|2a+d−2H −

b(t, k)
, (5.8)

where

H −

b(t, k) :=1+t
1−1/b |k|2+|k|2b

+t (a+2b−2)/b F
R
d

1
1+|k|2b+|kŒ|2b+t1−1/b |k−kŒ|2

×
(C(kŒ) k, k)Rd a(|kŒ| t−1/(2b)) dkŒ

|kŒ|2a+d−2
. (5.9)

When a+b > 1 and a+2b < 2 (note that then necessarily b < 1, see Fig. 1),
we have, by virtue of the Lebesgue Dominated Convergence Theorem

dg(t) \ c1t (a+b−1)/b, -t > 0 (5.10)

for some c1 > 0.
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5.1.2. The Case (ii)

a+2b > 2 and b < 1. We use the same substitution as in the previous
section and estimate

H −

b(t, k) [ 1+t
1−1/b |k|2+|k|2b

+t (a+2b−2)/b |k|2 F
Kt1/(2b)

0

dkŒ
(kŒ)2a−1 (1+|k|2b+(kŒ)2b)

. (5.11)

After the substitution u :=kŒ(1+|k|2b)−1/(2b) in the integral on the right
hand side of (5.11) we obtain the following upper bound on the left hand
side of (5.11)

1+t1−1/b |k|2+|k|2b+I0t (a+2b−2)/b |k|2 (1+|k|2b) (1−a−b)/(2b)

[ 1+t1−1/b |k|2+|k|2b+I0t (a+2b−2)/b |k|2(2−a−b),

with

I0 :=F
+.

0

du
u2a−1(1+u2b)

<+., for a+b > 1.

Therefore, by virtue of (5.8), we can estimate

dg(t) \ t (a+b−1)/b F
R
d

(C(k) e, e)Rd a(|k| t−1/(2b)) dk
|k|2a+d−2 (1+t1−1/b |k|2+|k|2b+I0t (a+2b−2)/b |k|2(2−a−b))

.

After performing the substitution l :=t (a+2b−2)/[2b(2−a−b)]k we conclude that

lim inf
t ‘+.

dg(t)
t (1−b)/(2−a−b)

\ C,

with

C :=a(0) F
R
d

(C(l) e, e)Rd d l
|l|2a+d−2 (1+I0 |l|2(2−a−b))

.

5.1.3. The Case (iii)

In this case we change variables k :=`t k, kŒ :=`t kŒ and arrive at

dg(t)=ta F
R
d

(C(k) e, e)Rd a(t−1/2 |k|) dk
|k|2a+d−2H'

b(t, k)
,
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where

H'

b(t, k) :=1+|k|
2+|k|2b t1−b

+ta F
R
d

1
1+|k|2b t1−b+|kŒ|2b t1−b+|k−kŒ|2

×
(C(kŒ) k, k)Rd a(|kŒ|/`t) dkŒ

|kŒ|2a+d−2
.

Since b \ 1 the influence of the terms |k|2b t1−b, |kŒ|2b t1−b appearing in the
above expression is negligible as t± 1. In order to obtain a lower bound
on dg(t) we can repeat therefore the argument of Section 4.2 and obtain as
a result the conclusion of part (iii).

5.2. The Proof of the Upper Bounds on cg

We follow the same route as in Section 4.3 and use the variational
principle as expressed by (3.7) with F=0. Note that

||Ve ||
2
−1, 1/t=F

R
d

ce(k) a(|k|) dk
(|k|2+|k|2b+1t) |k|

2a+d−2 [ C F
K

0

dk
(k2+k2b+1t) k

2a−1 . (5.12)

We consider two cases. First, when b < 1, then we substitute k :=t1/(2b)k
and obtain the upper bounds as claimed in parts (i) and (ii) of Theorem 2.

When, on the other hand b > 1 we conclude the claim (iii) by sub-
stituting k :=t1/2k in the integral expression on the right hand side of
(5.12). L
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